1.0 Introduction
This Reference Document is intended for experienced installing technicians. It is a basic reference to ensure the appropriate keypad mode is used. Models described include the VAX-600KP, as well as variants supporting most industry leading card and tag technologies.

The model VAX-600KP integrates a keypad with an RFID card reader into a single, integrated device. The keypad itself is alphanumeric and backlit. In operation the keypad and RFID card reader portions of the VAX-600KP share the same Wiegand data lines. Specifically, data from either the keypad or the RFID card reader is passed to the access control system on the same cable. Keypad data is passed according to either the 8-Bit Burst (default) or 26-Bit Wiegand data format. And as such the VAX-600KP is appropriate for use in applications requiring keypad-only, RFID card reader-only, or keypad plus RFID card reader applications (commonly known as card + PIN).

A keypad is a hardware component commonly found in use with more sophisticated, or higher security, electronic access control systems. In operation they are flexible, and can be used for arming or disarming system attributes, or for sending a PIN, or personal identification number, to the system. Typically, a PIN is a secret alphanumeric password shared between a user and the system, and is used to authenticate the user to the system. In one use scenario the user will present their access card to the reader and then enter their PIN on the keypad. Upon receiving the user’s access card and PIN data, the system will look up the PIN based upon the user ID and then compares the looked-up PIN with the received PIN. In this use scenario only when the number entered on the keypad matches the number stored in the system will the user be granted access through a controlled access point, such as a locked door.

NOTES:
• The keypad is based upon non-mechanical, solid-state technology, and is optimized for use with a bare finger.
• For best keypad operation, the user’s finger must be physically lifted from the keypad between key presses. Only one key can be pressed at a time.
• Upon each individual key press, the reader will respond with a beep of its audio tone and a flash of its LED.
• The keypad’s blue backlighting is activated for approximately 20 seconds upon key press or card presentation.
• For user orientation in non-illuminated environments, the keypad’s 5-key is always backlit.
• The VAX-600KP only supports Wiegand output formats. It does not support magnetic stripe output formats.

2.0 8-Bit Burst Keypad Mode
While in the 8-Bit Burst mode each key press results in the reader transmitting 8 bits of data to the host (reference Table 1).

<table>
<thead>
<tr>
<th>Keypad Entry</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>*</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Data</td>
<td>11110000</td>
<td>11100001</td>
<td>11010010</td>
<td>11000011</td>
<td>10110100</td>
<td>10100101</td>
<td>10010110</td>
<td>10000111</td>
<td>01111000</td>
<td>01101001</td>
<td>01011010</td>
<td>01001011</td>
</tr>
<tr>
<td>Decimal Equivalent</td>
<td>240</td>
<td>255</td>
<td>210</td>
<td>195</td>
<td>180</td>
<td>165</td>
<td>150</td>
<td>135</td>
<td>120</td>
<td>105</td>
<td>90</td>
<td>75</td>
</tr>
</tbody>
</table>

2.1 Enable 8-Bit Burst
This procedure is only applicable if the reader is currently in 26-Bit Wiegand mode.
1. Cycle power to the reader.
2. Present the Wiegand Keypad Data Mode control card to the reader (beeps four times).
3. Press the #-key (reader beeps four times to indicate success).
4. Press *-key (should beep once to indicate 8-Bit Burst is enabled).
3.0 26-Bit Wiegand Mode
While in the 26-Bit Wiegand mode the user’s PIN is outputted as the ID Number portion of a 26-Bit Wiegand message. As such, PINs can range from 0 to 65534, with 65535 normally reserved as an error code. A facility code ranging from 0 to 255 must be programmed into the reader when converting to 26-Bit mode (parity is calculated by the reader). The # key must be pressed to transmit the 26-Bit message to the host (reference Table 2).

PIN 65535 is normally used as an error code. The reader will transmit this code to the host when:
• The # key is pressed without any preceding digits.
• When a PIN value of 0 is entered (cannot use 0 as a PIN)
• Entering the PIN 65535, or any PIN greater than 65535.

NOTES:
• Pressing the * key overwrites all previous key presses (beeps four times when pressed).
• There is a five second time-out between PIN entries, or entry attempts. If a time-out occurs all previous key presses are overwritten. The reader beeps four times to indicate a time-out has occurred.

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Even parity over bits 2 to 13</td>
</tr>
<tr>
<td>2 to 9</td>
<td>Facility Code (0 to 255); Bit 2 is MSB</td>
</tr>
<tr>
<td>10 to 25</td>
<td>ID Number/PIN (0 to 65,535); Bit 10 is MSB</td>
</tr>
<tr>
<td>26</td>
<td>Odd parity over bits 14 to 25</td>
</tr>
</tbody>
</table>

3.1 Enable 26-Bit Wiegand Mode
This procedure is only applicable if the reader is currently on 8-Bit Burst mode.
1. Cycle power to the reader.
2. Present the Wiegand Keypad Data Mode control card to the reader (beeps four times).
3. Enter the facility code to be applied to the keypad (FC = 0 to 255); default is usually set to 0. If an unacceptable facility code is entered the reader will give out one long beep.
4. Press the # key (reader beeps four times to indicate success).
5. Press the * key (should beep four times to indicate 26-Bit mode is enabled).

4.0 Test Keypad Mode
To verify the keypad mode of the reader press the * key. If the reader beeps once, the keypad mode is 8-Bit Burst. If the reader beeps 4 times, the keypad mode is 26-Bit Wiegand.

5.0 Optional 4-Bit Burst Mode

<table>
<thead>
<tr>
<th>Keypad Entry</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>*</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Data</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
</tr>
<tr>
<td>Decimal Equivalent</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

For additional information contact Vicon directly.

Visit our website for detailed information:
www.vicon-security.com

©2015 Vicon Industries Inc. All rights reserved. Printed in USA.
Product specifications and availability subject to change without notice.
Vicon Part Number: 8009-8277-20-00 Rev 8.15